static <VD,ED> Graph<Object,Object> run(Graph<VD,ED> graph, int numIter, double resetProb, scala.reflect.ClassTag<VD> evidence$1, scala.reflect.ClassTag<ED> evidence$2)
Run PageRank for a fixed number of iterations returning a graph with vertex
attributes containing the PageRank and edge attributes the normalized edge weight.
static <VD,ED> Graph<Vector,Object> runParallelPersonalizedPageRank(Graph<VD,ED> graph, int numIter, double resetProb, long[] sources, scala.reflect.ClassTag<VD> evidence$5, scala.reflect.ClassTag<ED> evidence$6)
Run Personalized PageRank for a fixed number of iterations, for a set of starting nodes in parallel.
static <VD,ED> Graph<Object,Object> runUntilConvergence(Graph<VD,ED> graph, double tol, double resetProb, scala.reflect.ClassTag<VD> evidence$7, scala.reflect.ClassTag<ED> evidence$8)
Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.
static <VD,ED> Graph<Object,Object> runUntilConvergenceWithOptions(Graph<VD,ED> graph, double tol, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$9, scala.reflect.ClassTag<ED> evidence$10)
Run a dynamic version of PageRank returning a graph with vertex attributes containing the PageRank and edge attributes containing the normalized edge weight.
static <VD,ED> Graph<Object,Object> runWithOptions(Graph<VD,ED> graph, int numIter, double resetProb, scala.Option<Object> srcId, scala.reflect.ClassTag<VD> evidence$3, scala.reflect.ClassTag<ED> evidence$4)
Run PageRank for a fixed number of iterations returning a graph with vertex attributes containing the PageRank and edge attributes the normalized edge weight.