📔
Data Science with Apache Spark
  • Preface
  • Contents
  • Basic Prerequisite Skills
  • Computer needed for this course
  • Spark Environment Setup
  • Dev environment setup, task list
  • JDK setup
  • Download and install Anaconda Python and create virtual environment with Python 3.6
  • Download and install Spark
  • Eclipse, the Scala IDE
  • Install findspark, add spylon-kernel for scala
  • ssh and scp client
  • Summary
  • Development environment on MacOS
  • Production Spark Environment Setup
  • VirtualBox VM
  • VirtualBox only shows 32bit on AMD CPU
  • Configure VirtualBox NAT as Network Adapter on Guest VM and Allow putty ssh Through Port Forwarding
  • Docker deployment of Spark Cluster
  • Create customized Apache Spark Docker container
  • Dockerfile
  • docker-compose and docker-compose.yml
  • Launch custom built Docker container with docker-compose
  • Entering Docker Container
  • Setup Hadoop, Hive and Spark on Linux without docker
  • Hadoop Preparation
  • Hadoop setup
  • Configure $HADOOP_HOME/etc/hadoop
  • HDFS
  • Start and stop Hadoop
  • Work with Hadoop and HDFS file system
  • Connect to Hadoop web interface port 50070 and 8088
  • Install Hive
  • hive home
  • Initialize hive schema
  • Start hive metastore service.
  • hive-site.xml
  • Hive client
  • Setup Apache Spark
  • Spark Home
  • Jupyter-notebook server
  • Python 3 Warm Up
  • Basics
  • Iterables/Collections
  • Strings
  • List
  • Tuple
  • Dictionary
  • Set
  • Conditional statement
  • for loop
  • while loop
  • Functions and methods
  • map and filter
  • map and filter takes function as input
  • lambda
  • Python Class
  • Input and if statement
  • Input from a file
  • Output to a file
  • try except
  • Python coding exercise
  • Scala Warm Up
  • Start Spylon-kernel on Jupyter-notebook
  • Type of Variable: Mutable or immutable
  • Block statement
  • Scala Data Type
  • Array in Scala
  • Methods
  • Functions
  • Anonymous function
  • Scala map and filter methods
  • Class
  • Objects
  • Trait
  • Tuple in Scala
  • List/Seq
  • Set in Scala
  • Scala Map
  • Scala if statement
  • Scala for loop
  • Scala While Loop
  • Scala Exceptions + try catch finally
  • Scala coding exercise
  • Run a program to estimate pi
  • Common Spark command line
  • Run Scala code with spark-submit
  • Python with Apache Spark using Jupyter notebook
  • Spark Core Introduction
  • Spark and Scala Version
  • Basic Spark Package
  • Resilient Distributed Datasets (RDDs)
  • RDD Operations
  • Passing Function to Spark
  • Printing elements of an RDD
  • Working with key value pair
  • RDD Transformation Functions
  • RDD Action Functions
  • SPARK SQL
  • SQL
  • Datasets and DataFrames
  • SparkSession
  • Creating DataFrames
  • Running SQL Queries Programmatically
  • Issue from running Cartesian Join Query
  • Creating Datasets
  • Interoperating with RDD
  • Untyped User-Defined Aggregate Functions
  • Generic Load/Save Functions
  • Manually specify file option
  • Run SQL on files directly
  • Save Mode
  • Saving to Persistent Tables
  • Bucketing, Sorting and Partitioning
  • Apache Arrow
  • Install Python Arrow Module PyArrow
  • Issue might happen import PyArrow
  • Enabling for Conversion to/from Pandas in Python
  • Connect to any data source the same consistent way
  • Spark SQL Implementation Example in Scala
  • Run scala code in Eclipse IDE
  • Hive Integration, run SQL or HiveQL queries on existing warehouses.
  • Example: Enrich JSON
  • Integrate Tableau Data Visualization with Hive Data Warehouse and Apache Spark SQL
  • Connect Tableau to Spark SQL running in VM with VirtualBox with NAT
  • Issues with connecting from Tableau to Spark SQL
  • SPARK Streaming
  • Discretized Streams (DStreams)
  • Transformations on DStreams
  • map(func)
  • filter(func)
  • repartition(numPartitions)
  • union(otherStream)
  • reduce(func)
  • count()
  • countByValue()
  • reduceByKey(func, [numTasks])
  • join(otherStream, [numTasks])
  • cogroup(otherStream, [numTasks])
  • transform(func)
  • updateStateByKey(func)
  • Scala Tips for updateStateByKey
  • repartition(numPartitions)
  • DStream Window Operations
  • DStream Window Transformation
  • countByWindow(windowLength, slideInterval)
  • reduceByWindow(func, windowLength, slideInterval)
  • reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks])
  • reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks])
  • countByValueAndWindow(windowLength, slideInterval, [numTasks])
  • window(windowLength, slideInterval)
  • Window DStream print(n)
  • saveAsTextFiles(prefix, [suffix])
  • saveAsObjectFiles(prefix, [suffix])
  • saveAsHadoopFiles(prefix, [suffix])
  • foreachRDD(func)
  • Build Twitter Scala API Library for Spark Streaming using sbt
  • Spark Streaming with Twitter, you can get public tweets by using Twitter API.
  • Spark streaming use case with Python
  • Spark Graph Computing
  • Spark Graph Computing Continue
  • Graphx
  • Package org.apache.spark.graphx
  • Edge Class
  • EdgeContext Class
  • EdgeDirection Class
  • EdgeRDD Class
  • EdgeTriplet Class
  • Graph Class
  • GraphLoader Object
  • GraphOps Class
  • GraphXUtils Object
  • PartitionStrategy Trait
  • Pregel Object
  • TripletFields Class
  • VertexRDD Class
  • Package org.apache.spark.graphx.impl
  • AggregatingEdgeContext Class
  • EdgeRDDImpl Class
  • Class GraphImpl<VD,ED>
  • Class VertexRDDImpl<VD>
  • Package org.apache.spark.graphx.lib
  • Class ConnectedComponents
  • Class LabelPropagation
  • Class PageRank
  • Class ShortestPaths
  • Class StronglyConnectedComponents
  • Class SVDPlusPlus
  • Class SVDPlusPlus.Conf
  • Class TriangleCount
  • Package org.apache.spark.graphx.util
  • Class BytecodeUtils
  • Class GraphGenerators
  • Graphx Example 1
  • Graphx Example 2
  • Graphx Example 3
  • Spark Graphx Describes Organization Chart Easy and Fast
  • Page Rank with Apache Spark Graphx
  • bulk synchronous parallel with Google Pregel Graphx Implementation Use Cases
  • Tree and Graph Traversal with and without Spark Graphx
  • Graphx Graph Traversal with Pregel Explained
  • Spark Machine Learning
  • Binary Classification
  • Multiclass Classification
  • Regression
  • Correlation
  • Image Data Source
  • ML DataFrame is SQL DataFrame
  • ML Transformer
  • ML Estimator
  • ML Pipeline
  • Transformer/Estimator Parameters
  • Extracting, transforming and selecting features
  • TF-IDF
  • Word2Vec
  • FeatureHasher
  • Tokenizer
  • CountVectorizer
  • StopWordRemover
  • n-gram
  • Binarizer
  • PCA
  • PolynomialExpansion
  • StringIndexer
  • Discrete Cosine Transform (DCT)
  • One-hot encoding
  • StandardScaler
  • IndexToString
  • VectorIndexer
  • Interaction
  • Normalizer
  • MinMaxScaler
  • MaxAbScaler
  • Bucketizer
  • ElementwiseProduct
  • SQLTransformer
  • VectorAssembler
  • VectorSizeHint
  • QuantileDiscretizer
  • Imputer
  • VectorSlicer
  • RFormula
  • ChiSqSelector
  • Locality Sensitive Hashing
  • MinHash for Jaccard Distance
  • Classification and Regression
  • LogisticRegression
  • OneVsRest
  • Naive Bayes classifiers
  • Decision trees
  • Random forests
  • Gradient-boosted trees (GBTs)
  • Multilayer perceptron classifier
  • Linear Support Vector Machine
  • Linear Regression
  • Generalized linear regression
  • Isotonic regression
  • Decision Tree Regression
  • Random Forest Regression
  • Gradient-boosted tree regression
  • Survival regression
  • Clustering
  • k-means
  • Latent Dirichlet allocation or LDA
  • Bisecting k-means
  • A Gaussian Mixture Model
  • Collaborative filtering
  • Frequent Pattern Mining
  • FP-Growth
  • PrefixSpan
  • ML Tuning: model selection and hyperparameter tuning
  • Model selection (a.k.a. hyperparameter tuning)
  • Cross-Validation
  • Train-Validation Split
  • Spark Machine Learning Applications
  • Apache Spark SQL & Machine Learning on Genetic Variant Classifications
  • Data Visualization with Vegas Viz and Scala with Spark ML
  • Apache Spark Machine Learning with Dremio Data Lake Engine
  • Dremio Data Lake Engine Apache Arrow Flight Connector with Spark Machine Learning
  • Neural Network with Apache Spark Machine Learning Multilayer Perceptron Classifier
  • Setup TensorFlow, Keras, Theano, Pytorch/torchvision on the CentOS VM
  • Virus Xray Image Classification with Tensorflow Keras Python and Apache Spark Scala
  • Appendix -- Video Presentations
  • References
Powered by GitBook
On this page
  • Setting Up
  • Dev environment setup, task list
  • Production Spark Environment Setup
  • Python and Scala Prep
  • Python 3 Warm Up
  • Scala Warm Up
  • Spark Core
  • Spark Core Introduction
  • Spark SQL
  • SPARK SQL Introduction
  • Spark Streaming
  • SPARK Streaming Introduction
  • Spark Graphx
  • Spark Graph Computing
  • Spark Graph Computing Continue
  • Graphx
  • Spark Machine Learning
  • Spark Machine Learning Introduction
  • Appendix
  • Video presentation
  • References

Was this helpful?

Contents

all you need is to just click the links...

PreviousPrefaceNextBasic Prerequisite Skills

Last updated 5 years ago

Was this helpful?

Setting Up

Python and Scala Prep

Spark Core

Spark SQL

Spark Streaming

Window DStream Join Operations

Spark Graphx

Spark Machine Learning

Appendix

Computer needed for this course
Spark Environment Setup
Dev environment setup, task list
JDK setup
Download and install Anaconda Python and create virtual environment with Python 3.6
Download and install Spark
Scala IDE
Install findspark, add spylon-kernel for scala
Summary
Production Spark Environment Setup
Docker deployment of Spark Cluster
Create customized Apache Spark Docker container
Dockerfile
docker-compose and docker-compose.yml
Launch custom built Docker container with docker-compose
Setup Hadoop, Hive and Spark on Linux without docker
Hadoop configuration
Hadoop setup
Configure $HADOOP_HOME/etc/hadoop
HDFS
Start Hadoop
Work with Hadoop and HDFS file system
Connect to Hadoop web interface port 50070
Install Hive
hive home
Initialize hive schema
Start hive metastore service
Hive client
Setup Apache Spark
Spark Home
Python 3 Warm Up
Basics
Iterables/Collections
Strings
List
Tuple
Dictionary
Set
Conditional statement
Loop statement -- For statement
Functions and methods
map and filter
map and filter takes function as input
lambda
Data structure
Input and if statement
Input from a file
Output to a file
Python coding exercise
Scala Warm Up
Type of Variable: Mutable or immutable
Scala Data Type
Array in Scala
Methods
Class
Objects
Trait
Scala if statement
Scala for loop
Scala While Loop
Scala Exceptions + try catch finally
Scala coding exercise
Run a program to estimate pi
Run Scala code with Apache Spark
Python with Apache Spark using Jupyter notebook
Spark Core Introduction
Spark and Scala Version
Basic Spark Package
Resilient Distributed Datasets (RDDs)
RDD Operations
Passing Function to Spark
Printing elements of an RDD
Working with key value pair
RDD Transformation Funcitons
RDD Action Functions
SPARK SQL Introduction
SQL
datasets vs dataframe
SparkSession
Creating DataFrames
Running SQL Queries Programmatically
Creating Datasets
Interoperating with RDD
Untyped User-Defined Aggregate Functions
Generic Load/Save Functions
Manually specify file option
Run SQL on files directly
Save Mode
Saving to Persistent Tables
Bucketing, Sorting and Partitioning
Apache Arrow
Install Python Arrow Module PyArrow
Issue might happen import PyArrow
Enabling for Conversion to/from Pandas in Python
Connect to any data source the same consistent way
Spark SQL Implementation Example in Scala
Run Scala code in Eclipse IDE
Hive Integration, run SQL or HiveQL queries on existing warehouses.
Example: Enrich JSON
SPARK Streaming Introduction
Discretized Streams (DStreams)
Transformations on DStreams
map(func)
filter(func)
repartition(numPartitions)
union(otherStream)
reduce(func)
count()
countByValue()
reduceByKey(func, [numTasks])
join(otherStream, [numTasks])
cogroup(otherStream, [numTasks])
transform(func)
updateStateByKey(func)
repartition(numPartitions)
DStream Window Operations
DStream Window Transformation
countByWindow(windowLength, slideInterval)
reduceByWindow(func, windowLength, slideInterval)
reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks])
reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks])
countByValueAndWindow(windowLength, slideInterval, [numTasks])
window(windowLength, slideInterval)
Window DStream print(n)
saveAsTextFiles(prefix, [suffix])
saveAsObjectFiles(prefix, [suffix])
saveAsHadoopFiles(prefix, [suffix])
foreachRDD(func)
Spark Streaming with Twitter, you can get public tweets by using Twitter API.
Spark streaming use case with Python
Spark Graph Computing
Spark Graph Computing Continue
Graphx
Package org.apache.spark.graphx
Edge Class
EdgeContext Class
EdgeDirection Class
EdgeRDD Class
EdgeTriplet Class
Graph Class
GraphLoader Object
GraphOps Class
GraphXUtils Object
PartitionStrategy Trait
Pregel Object
TripletFields Class
VertexRDD Class
Package org.apache.spark.graphx.impl
AggregatingEdgeContext Class
EdgeRDDImpl Class
Class GraphImpl
Class VertexRDDImpl
Package org.apache.spark.graphx.lib
Class ConnectedComponents
Class LabelPropagation
Class PageRank
Class ShortestPaths
Class StronglyConnectedComponents
Class SVDPlusPlus
Class SVDPlusPlus.Conf
Class TriangleCount
Package org.apache.spark.graphx.util
Class BytecodeUtils
Class GraphGenerators
Graphx Example 1
Graphx Example 2
Graphx Example 3
Spark Graphx Describes Organization Chart Easy and Fast
Page Rank with Apache Spark Graphx
Bulk synchronous parallel with Google Pregel Graphx Implementation Use Cases
Tree and Graph Traversal with and without Spark Graphx
Spark Machine Learning Introduction
Binary Classification
Multiclass Classification
Regression
Correlation
Image Data Source
ML DataFrame is SQL DataFrame
ML Transformer
ML Estimator
ML Pipeline
Transformer/Estimator Parameters
Extracting, transforming and selecting features
TF-IDF
Word2Vec
FeatureHasher
Tokenizer
CountVectorizer
StopWordRemover
n-gram
Binarizer
PCA
PolynomialExpansion
StringIndexer
Discrete Cosine Transform (DCT)
One-hot encoding
StandardScaler
IndexToString
VectorIndexer
Interaction
Normalizer
MinMaxScaler
MaxAbScaler
Bucketizer
ElementwiseProduct
SQLTransformer
VectorAssembler
VectorSizeHint
QuantileDiscretizer
Imputer
VectorSlicer
RFormula
ChiSqSelector
Locality Sensitive Hashing
MinHash for Jaccard Distance
Classification and Regression
LogisticRegression
OneVsRest
Naive Bayes classifiers
Decision trees
Random forests
Gradient-boosted trees (GBTs)
Multilayer perceptron classifier
Linear Support Vector Machine
Linear Regression
Generalized linear regression
Isotonic regression
Decision Tree Regression
Random Forest Regression
Gradient-boosted tree regression
Survival regression
Clustering
k-means
Latent Dirichlet allocation or LDA
Bisecting k-means
A Gaussian Mixture Model
Collaborative filtering
Frequent Pattern Mining
FP-Growth
PrefixSpan
ML Tuning: model selection and hyperparameter tuning
Model selection (a.k.a. hyperparameter tuning)
Cross-Validation
Train-Validation Split
Spark Machine Learning Applications
Data Visualization with Vegas Viz and Scala with Spark ML
Apache Spark Machine Learning with Dremio Data Lake Engine
Dremio Data Lake Engine Apache Arrow Flight Connector with Spark Machine Learning
Neural Network with Apache Spark Machine Learning Multilayer Perceptron Classifier
Video presentation
References